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Asymptotic integration of the three-dimensional dynamic equations of the theory of elasticity is carried 

out for the case of thin shells. Specific features of the asymptotic properties of the stress-strain state 

(SSS) of the shell in dynamic problems are discussed. Limiting two-dimensional systems of equations 

are derived. 

ALTHOUGH there are many publications ([l-3], and others) devoted to the application of 
asymptotic methods to problems concerned with the dynamics of shells in the two-dimensional 
setting, no asymptotic derivation of the two-dimensional dynamic equations of shell theory 
from the three-dimensional equations of the theory of elasticity has been carried out. Only the 
integrals of the dynamic equations of the theory of elasticity for the case of thin shells have 
been considered [4,5]. 

Since there is a significant difference between the asymptotic properties of the stress-strain 
state (SSS) of a shell in dynamics and statics, the dynamic case calls for a special study and 
cannot be reduced to a formal incorporation of inertial terms. Besides, the study of the 
asymptotic behaviour of the parameters of the SSS across the shell is important in dynamic 
problems in which it is required to prove the existence of domains (or intervals) in which the 
solutions obtained by means of the two-dimensional shell theory and the boundary-layer 
theory [3,4] agree with one another. 

1. EQUATIONS OF THE THREE-DIMENSIONAL THEORY OF ELASTICITY 

We consider a thin elastic shell with relative half-thickness 9 = hl R (2h is the thickness of 
the shell and R is the characteristic radius of curvature of the middle surface of the shell). 

We take the dynamic equations of the theory of elasticity describing the motion of the shell 
as a three-dimensional elastic body in the form [6] 
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Here i z j = 1, 2, a,, (k, I= 1, 2,3) are the stresses, u,,, (m = 1, 2, 3) are the displacements, E 
is Young’s modulus, v is Poisson’s ratio, p is the density of the material of the shell, A,and R,,, 
are the coefficients of the first quadratic form and the principal radii of curvature of the middle 
surface 4’ = 0 of the shell, a is the variability index of the SSS of the shell, and a is the dynamics 
index. The dimensionless variables &, c, z are related to their dimensional analogues a,, t (ai 
are the parameters of the curvature lines in the middle surface, a3 is the distance along the 
normal line to the middle plane, and t is the time) by the following scaling relations 

Oli = Rq’gi, 0~3 = Rgf, t = RCi’qaT, C, = @ (1.3) 

It is assumed that differentiation with respect to the dimensionless variables does not affect 
the asymptotic order of the original quantities and the variability and dynamics indices satisfy 
the inequalities 

q<l,a<l (1.4) 



As~ptotic integration of the dynamic equations of the theory of elasticity 97 

These inequalities restrict the length of the deformation and the characteristic time scale of 
the processes being studied and constitute a necessary condition for the application of any two- 
dimensional shell theory. 

We will assume that the front surfaces of the shell are free of any external loads, i.e. 

731(~lrF2,fl)=73(~l,52,~i:1)=0 (1.5) 

and we will focus our attention on the following two cases, that are most important for 
applications: 4 = a and 4 = (1 +a)/2 (a z= 0). In what follows it will be demonstrated that the 
first case encompasses the momentum-free (a = 0) and planar (a > 0) integrals of the dynamic 
equations of the theory of elasticity, while the other case contains the planar-bending integrals 
(a= 0) as well as bending integrals (a> 0). For the momentum-free integrals V, - ui, for the 
planar integrals ~~%isu,, and for the bending and planar-bending integrals v,%vi. 

2. ASYMPTOTIC INTEGRATION IN THE CASE WHEN q=a 

We take the asymptotic forms of the SSS of the shell in the form 

vi =~qQ(vf t gvf), v3 = Rq(v: + q3q- ‘v:) 
?f = E(Tp q ?j), Tjj = a,?$ + q TO) 

753 =Ev 3-3Q(+‘3 +~~@+;3) > r3 =E+2q(~!j +GT:) 
(2.1) 

Here it is assumed that all the quantities with zero and unity superscripts have the same 
asymptotic order. The quantities with superscript zero define the SSS that is symmetric relative 
to the middle surface of the shell (r;, rl, ri, vi” are even functions of c, and rz, ui are odd 
functions of c). The quantities with superscript one define the SSS that is antisymmetric rela- 
tive to the middle surface (23, ri, r:, u,! are odd functions of [, while &, ui are even functions 
of 0. 

The method Connected with the decomposition of the SSS of the shell into the symmetric 
and antisymmetric components has been applied before in the case of the asymptotic integ- 
ration of the dynamic equations of the theory of elasticity in the neighbo~h~ of the frequen- 
cies of the section 171. 

For q=O the asymptotic form (2.1) coincides with that of a static momentum-free SSS [6]. 
For q = 1 the SSS of the shell is symmetric relative to the middle surface apart from the value 
of O(q). With this accuracy the Lame coefficients of the chosen three-orthogonal coordinate 
system are constant in 5: 

On substituting (2.1) into (1.2), we distinguish the even functions 
and odd function (Li, L’, I(‘, e,“, m,‘, g:) of the transversal coordinate 

(Ly, Lo, F’, ef, M;, g,!) 
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From the form of (2.1) it follows that in the case under consideration the even functions u,“, 
z:, zi, as well as vi for q =0, will be the principal asymptotic parameters of the SSS of the 
shell. Substituting (2.1) and (2.2) into (1.1) and discarding terms of order O(V~-~) as compared 
to unity, we obtain a closed system of equations for the principal parameters of the SSS, It has 
the form 
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The admissible error 0(?fz-28) is the same as that of the slightly modified Kirchhoff-Love 
shell theory in statics [6]. All the remai~ng quantities in (2.1), except for z,‘: and r:, can be 
determined to within this error from the known variables u;, r:, zy and vi using the following 
system of equations 
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However, the stresses & 2,” must satisfy the homogeneous boundary conditions 

T:3(~1,F2,~l)=7~(Elr~2,rl)=0 (2.5) 

on the side surfaces of the shell. 
In order to determine the stresses 7$, 7: one must construct the systems of equations (2.3) 

and (2.4) with higher accuracy than O(q’-%). We shall not dwell on this question here. 
Taking the integrals with respect to [in (2.3) and then (2.4) in view of (2.5) we find that the 
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studied integrals of the three-dimensional dynamic equations of the theory of elasticity with 
error o($4) have the form of polynomials in the first coordinate 

(2.6) 

All the functions in (2.6) with a comma in the subscript are independent of the transversal 
coordinate c and are related by the formulae 
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To justify the asymptotic integration performed above, one must substitute relations (2.1) 
and (2.2) into (1.1) and (1.2) after expressing all the quantities in these relations by (2.6) and 
(2.7). By means of identity transformations it can be verified directly that the resulting 
discrepancy will be of order ~7~~“. 

3. ASYMPTOTICINTEGRATION IN THECASE WHEN q=x(l+a) 

We take the asymptotic form of the SSS of the shell to be 

vi =Rv(T 2Q - ‘v~+v;), vg =RvQ(qvi +v;) 
7i=Eq1-Q(v2Q-1T; t7;), 7ij=E711-Q(~2Q--17~t7i:.) (3.1) 
ri3 = En2 - 2Q (v $3 th), 73 =Ev 

3--Q@2Q- IT; +& 

The quantities with zero and unity superscripts have the same meaning as in Sec. 2. 
Substituting (3.1) into (1.2), we separate the even and odd functions of the transversal 

coordinate bymeans of the formulae - 

ei = Tj l-Q($Q--l,+,;), mi=771-Q(172Q-1,qt,:),gi=77gqtgf 

where Lf, Lk, F’, m,! are defined by (2.2) as before, and where the following 
satisfied for the remaining quantities 
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expressions are 

(3.3) 

Substituting (3.1) and (3.2) into (1.1) and discarding all terms of order 0(q2-&) we arrive at 
equations of the form 
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The stresses +, ri, 2: must satisfy the homogeneous boundary conditions on the side 
surfaces c= fl of the shell. In order to determine ri it is necessary to set up (3.4) with 
accuracy exceeding O(rj*-“). 

Under the given boundary conditions on the side surfaces of the shell, the required integrals 
of the system of equations (3.4) are determined apart to the value of 0(r12-29) by (2.6) and the 
formulae 

All two-dimensional quantities in (2.6) and (3.5) are related by formulae (2.7) in which the 
expressions for et,, e,li, do, rt,, ri:,*, ri,* 
be added. The expressions have the form 

must be changed and expressions for rl, 1, ri, 3 must 
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respectively. 
Reasoning similar to that in Sec. 2 makes it possible to verify that the constructed integrals 

of the three-dimensional dynamic equations of the theory of elasticity have all the a priori 
assumed asymptotic properties. 

4. TWO-DIMENSIONAL EQUATIONS INVOLVING FORCES AND MOMENTA 

Following the traditional approach, we will obtain the equations of motion for the shell in 
terms of the forces and momenta. We begin with the case when q=a. We will derive a two- 
dimensional system of equations for determining the asymptotically principal parameters of 
the SSS of theshell. We introduce the notation - - - 

Tf=2Ehrto, Sfj=2Ehr$,,, uf=Rqqv$ 

w=--Rr,~~~&, ei=ejlo, o=mlo +mio 

Here T and S, are the normal and tangential stresses, y are the 
the middle surface, w is the deflection of the middle surface, and l i 

(4.1) 

tangential displacements of 
and o are the components 
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of the tangential deformation. 
Substituting (4.1) into (2.7) and taking (1.3) into account, we get 
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If 4 = a = 0, then formulae (4.1) define the dynamic momentum-free integrals of the system 
of equations (4.2). For these integrals ui -u,. For q =a>0 the integrals (4.2) are planar 
(vi+@. In this case, with accuracy O($‘) as compared to unity, one can neglect the term 
w/R, in the expression for ei (see (4.1) and (1.3)). To within this accuracy the first and third 
through to the sixth equations in (4.2) can be taken to form a separate subsystem, which, to 
within the metric, coincides with the equations of the plane problem of the size of elasticity for 
the case of a generalized plane stress state. In statics such a situation can be realized only if 
q > ): [6]. This is the main difference between the static and dynamic cases. 

The asymptotic behaviour of the two-dimensional quantities (4.1) and the corresponding 
asymptotic behaviour of the three-dimensional quantities (2.1) is specific of dynamic cases 
only. Physically it means that in dynamic cases the projection of the tangential forces onto the 
normal direction to the middle surface can be compensated by the transverse inertia of the 
shell. 

Starting from (2.7) one can also obtain the two-dimensional equations for those parameters 
of the SSS of the shell that are asymptotically of the higher order. Without dwelling on this 
point, we shall only state the expression for the transverse compression M = hutF 1 of the shell, 
which exceeds asymptotically the deflection w if 4 > X. It has the form 

(4.3) 

In the case when q = X(1 + a) we introduce the notation 

Here Gi and H6 are the bending momenta and torques, Ni are the cutting forces, yj are the 
twists, and ~~ and r are the components of the bending deformation of the middle plane. The 
remaining quantities have the same meaning as above. 

As opposed to (4.1), the asymptotic form (4.4) remains valid in statics, It corresponds to 
integrals for which u~.avj, 

Substituting (4.4) into (2.7) and (3.6) and taking (1.3) into account, we obtain a system of 
equations of the form 
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For q = X (a = 0) Eqs (4.5) describe the so-called planar-bending integraIs. They have the 
same asymptotic order of stresses caused by the tangential forces and momenta (see (3.1) and 
(4.4)). For a > 0 the planar-bending integrals turn into bending integrals, for which the stresses 
due to the momenta exceed asymptotically the stresses caused by the forces. In this case the 
planar terms (the first two terms in the second equation in (4.5)) are asymptotically of higher 
order and this equation together with the 3rd, 6th, 7th, 10th. and 11th equations in (4.5) essen- 
tially coincide with the bending equations for a plate in the metric of the middIe surface of the 
shell. However, it was demonstrated in [4] that, generally speaking, the above-mentioned 
planar terms in the second equation in (4.5) must be preserved in the entire domain 0 G a < 1 
because of the required accuracy of the resulting solution. 

To conclude, we remark that by retai~ng simultaneously all the terms ap~ar~g in (4.2) and 
(4.5), we arrive at the complete system of two-dimensional equations of the Kirchhoff-Love 
dynamic shell theory. 
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